Atmoszférikus plazmaforrások és felhasználások

Összeállította: Gergely András Dr. Török Tamás útmutatásai alapján

Miskolci Egyetem, 2012

TÁMOP-4.2.1.B-10/2/KONV-2010-0001

Plazmák: Maxwell-Boltzmann típusú elektromágneses rendszerek

- 1) Plazma források és előáll., ill. bev. a plazma spektroszkópiába
- 2) A Atmoszférikusaplazmák felhaszn.: felületkezelés
- Kis- és nagyhőmérsékletű; 'hideg' (mikroelektronika) és 'forró'
- Kis és atmoszférikus (nagynyom. plazmák)
- Felhasználási lehetőség: felületkezelés és bevonatok előáll., hulladék kezelés, kémiai reakciók és gáz kezelések, stb...
- Előáll. alapján: ív (termikus) és induktív atmoszférikus
- Definíció: a plazma egy többé-kevésbé ionizált gáz, az anyag 4. állapota (az univerzum 99%-a), elektron, ion és semleges atom alap- és gerjesztett állapotban (makroszkóposan semleges – szabad töltéshordozókat tartalmaz, ezért makroszkóposan vezet).

- Plazma előáll.: energia /E_n/ közléssel, termikus, elektromos árammal és elektromágneses mező/sugárzás
- Atmoszférikus plazmák előállítása: elektromos térrel
- elektromos mező E_n-t közöl a plazma fő töltéshordozójával, az elektronokkal (e⁻)
- gyorsított e⁻ ütközéseken keresztül a semleges atomokat gerjesztik, ionizálják és esetleg tovább gerjesztik, →
- Rugalmas ütközések: az atomok _{kin}E_n-ját növeli meg, de nem gerjeszti azokat a gyorsított e⁻ nyaláb
- Rugalmatlan ütk.: az e⁻ kin En-ja gerjeszti az atomokat és ionokat, ha az ütközés elég En közléssel jár
- A foton emisszió ált. gyors relaxációhoz, alapáll. elérése, a metastabil specieszek átlagos élettartama hosszabb a gátolt átmenet miatt, relaxáció ütközésen keresztül

 Plazma típusok: az E_n közlés mértéke és módja szerint a plazmák tulajdonsága is változik, az atmoszférikus plazmák a ködfénykisüléses és ív plazmákhoz állnak közel

Helyi termikus egyensúlyi és nem egyensúlyi plazmák

	LTE plazmák	Nem LTE plazmák
Jelenlegi elnevezés	Termikus	Hideg
	$T_e = T_h$	$T_e >> T_h$
	Nagy e ⁻ sűrűség: 10 ²¹ –10 ²⁶ m ³	Kisebb e⁻ sűrűség: <10 ¹⁹ m ³
Tulajdonságok	Rugalmatlan ütközések az e ⁻ és nehéz részecskék között, ami termeli a plazma aktív specieszeit, a rugalmas ütközések gyorsítják 'melegítik' a nehéz részecskéket (az e ⁻ _{kin} E _n fogy)	Rugalmatlan ütközések az e ⁻ és nehéz részecskék között – plazma kémia indukció Nehéz részecskék kevéssé melegednek (néhány rug. ütközés, csak az e ⁻ _{kin} E _n nagy)
Példák	Ívplazma (mag) T _e =T _h ≈10,000 K	Köd-fény kisüléses T _e ≈10,000– 100,000 K T _h ≈300– 1000 K

- Atmoszférikus plazmák:
- helyi termikus egyensúly vagy annak hiánya a spektroszkópiai elemzés miatt fontos (plazma paraméterek, pl.: részecske eloszlás, e⁻, gerjesztés, stb.) mivel ezek eltérőek a két esetben
- Helyi termodin. egyensúlyban lévő plazmák (LTE)
- feltétel: átmenetek és kémiai reakciók ütközés által legyenek indukálva (nem pedig sugárzás jellegű folyamatokkal)
- ütközés 'mikro-reverzibilis' kell hogy legyen (minden ütközés egy átlagos gerjesztés/relaxáció és ionizáció/rekombináció arányt követ
- a sorozatos ütközések _{kin}E_n haszn.-a időben állandó

- A tulajdonságok (Τ, ρ, λ) helyi gradiens jellemzői, elég kicsik kell legyenek hogy a plazmában található atomok, ionok, e⁻-ok elérjék az egyensúlyi állapotot
- A diffúziós idő $\geq t_{eei}$ (egyensúly elérési idő)
- Így a T_{nehéz részecskék} ≈ T_{elektron} (termikusan egységes, fúziós plazmák)
- Griem feltétel: egy optikailag tiszta homogén plazma; LTE és az e⁻ sűrűségre teljesül:

$$n_e = 9 \times 10^{23} \left(\frac{E_{21}}{E_{H^+}}\right)^3 \left(\frac{kT}{E_{H^+}}\right) (m^{-3})$$

- ahol, E₂₁: az alap és első gerjesztett állapot közötti átmenet E_n
- $EH^+ = 13,58 \text{ eV}$, a H ionizációs E_n
- T: a plazma hőmérséklet

- Ez a feltétel erős kapcsolatot állít:
- az LTE e⁻ sűrűség és az első gerj. áll. E_n-ja között (szig. megkötés, mivel a legtöbb plazma eltér az LTE-ktől, elsősorban kissűrűségű laboratóriumi plazmák)
- Termikusan nem egyens.-i plazmák (nem LTE-k):
- az LTE-től való eltérés egyik oka a gerjesztett részecskék E_n–jának Boltzmann eloszlása
- kis E_n szintek esetén az e⁻ ütközés indukálta relaxáció kisebb hatásfokú, sebességű mint a megfelelő gerjesztési sebesség, az ok: a sugárzással történő relaxáció növekvő valószínűsége

- LTE-től való eltérés oka:
- az e⁻, atomok és ionok nagy tömegbeli eltérése, ill. a nagy _{kin}E_n-beli eltérés (gyors e⁻ és csaknem álló atomok és ionok), ezért az e⁻ vannak döntő hatással a gerjesztésre és az átmeneti állapotra
- További tényező (LTE eltérés): a plazmában fellépő nagy gradiens és az ebből adódó intenzív diffúziós és konvekciós hatások
- Ezért az LTE eloszlás részleges lehet
- LTE érvényes közel az ionizációs küszöb táján, pl.: 5p atomi pályák vagy e fellett Ar-ban, ezért részleges (parciális) LTE (pLTE)

- A nem LTE plazmák két hőmérsékleti modellje:
- elektron hőm. (T_e) és a nehéz részecskék hőm. (T_h), a nagy tömeg különbség miatt a plazma hőmérsékletének a nehéz részecskék hőmérsékletét tekintjük
- Minél nagyobb az LTE-tól való eltérés, annál nagyobb a T_e és T_h közötti eltérés
- Plazma hőm. a nyomás szerint: Hg ívplazmában (átmenet a ködfény kisülési plazma állapotból az ívkisülés állapotba)

- Atmoszférikus plazmák:
- Kis nyomású plazmák (10⁻⁴-10⁻² kPa) mind nem LTE-k, rugalmatlan ütközések sokasága (nagy E_n különbség) gerjesztéssel, ionizációval, de az ütközések nem növelik a nehéz részecskék hőm.-t
- A nyomás növekedésével az ütközések valószínűsége, átlagos száma nő, rugalmatlan ütközéseken alapuló kémiai folyamatok indítását indukálja a nehéz részecskék hőmérsékletének emelkedésével
- T_e és T_h különbsége csökken, a plazma állapot közeledik az LTE-hez, de nem éri el, az intenzív jellemzők jelentős gradiense a részecskék mozgását akadályozza a kisülés irányába az egyensúly elérésére

- A betáp. E_n gerjesztés teljesítmény a plazma állapotát, minden tulajd. befoly.-a (LTE és nem LTE)
- A nagy E_n sűrűség LTE-t indukál (ívplazmák), kis En sűrűségű és impulzus gerj. keltett plazmák jellemzően nem LTE plazmák (kis E_n vagy rövid időtartam nem teszi lehetővé egy. áll. elérését)
- Atmoszférikus plazmafúvóka két zónája:
- középső vagy plazma mag zóna, ami LTE
- periférikus zóna, ami nem LTE (ebben a zónában sokkal kisebb a nehéz részecskék hőmérséklete, mint az e⁻)
- Szabadon égő 300 kPa Ar plazma 300-400 A árammal szükséges hogy elérje az LTE-t a középtart.-ban, átlagos e⁻ sűrűség: ~10²⁴ m⁻³, ettől eltérés az ív külső részében alakul ki, ahol az e⁻ sűrűség jellemzően ez alá csökken

- e[.] és ion frekvencia hidegplazmákban
- mikroplazmák feltűnése, plazma miniatűrizálás (kis E, igényű hordozható berendezések és az eszköz és működési kiadás csökkentése érdekében)

- A term. egy. fontos követelmény, mivel ez alakítja ki a plazma hőm.-tét!
- Függ a plazmaforrástól, így meghatározó az alkalmazásra nézve is
- Plazmaforrások
- Gerjesztési frekvencia (fontos paraméter)
- Plazma elektron frekvencia és ion frekvencia a hideg plazmákban (ködfénykisüléses plazmák)
- Gerjesztési mód szerint:
- egyenáramú és kisfrekvenciás kisüléses plazmák
- rádió-frekvenciás indításúak
- mikrohullámú kisülések

- Az egyen és kisfrekvenciás kisüléses plazmák:
- működés: folyamatos vagy impulzus módban
- impulzus üzemmód:
- rövid időre nagy E_n-jú gerjesztést engedélyez (nagy teljesítményű pumpálás) a rendszer mérsékelt felmelegedését okozva, de technikailag komplexebb kivitelezés és kevésbé ismételhető mint az egyenáramú
- Folyamatos munkamód:
- az ívplazma fáklya tipikusan egyenárammal táplált, és kétfajta:
- áramvezető ív és átviteles ív
- Mindkettőnek része:
- e-kat emittáló katód
- plazma gáz adagoló (rendszer)
- porlasztó (ami övezi, magába zárja a plazmát)

- Az áramvezető ívben a porlasztó elektromosan pozitíven kapcsolt
- a kezelt anyag az anód és a porlasztó van lebegő potenciálon
- az anód és katód között kialakuló plazma hőm. 8000-15000 K (mag és periféria/környezet tart.) ami nagy hőm.-ű technológiai eljárás kivitelezését teszi lehetővé (termikus hatás vizsgálata)
- Az ívplazma jó vezető, nagy áramstabilitás fenntartására alkalmas (I = 50-600 A)
- A gáz erősen ionizált, az elektron-sűrűség ~3×10²³ m⁻³
- Az ívplazmák fejlődése hosszú és eredményes, mára számos ipari alkalmazással

 Áramvezető és az átviteles ívplazma berendezés elvi felépítése

- nagy E_n, nagy seb. fáklyák
- Háromkatódos szerkezet egy szegmens anóddal (triplex kialakítás)
- A fáklya hosszú plazma oszloppal: stabilizáló örvények alakul ki benne a hossz mentén
- Miniatűr 'seal-less' tömítésmentes plazmafáklya térhódítása

- 'Ceruza' fáklyák (utóbbi ~5 év ipari fejlesztése):
- Mindegyik megoldás homogén, kis E_n-jú teljesítménnyel gerjesztett, áramvezető plazmaforrás felület-előkezelés céljára, elsősorban tapadó bevonatokkal történő alkalmazásokhoz
- klasszikus ívplazma alk.-kal ellentétes a kisülés, itt ugyanis kevés sugárzó hőt eredményez (nem jelentős melegedés), ezért akár kis hőm.-en bomló anyagok, pl.: polimerek kezelése is lehetséges
- A klasszikus ívplazmák: LTE kisüléses fáklyák, nagy T, ezért ott használják ahol nagy hőm. elérése szükséges, pl.: hegesztés, vágás, porlasztás, stb.
- A kis E_n-jú ceruza-fáklyák: nem LTE plazmaforrások (kémiailag dús környezet), csak kis hőm.-ű technológiákhoz alkalmazzák

- Impulzus üzemmód:
- Korona kisülés:
- nem LTE kisülés, drótszerű katód és az anyagot hordozó anódból áll a felépítés, és az egyenáramú E_n forrás impulzus üzemmódban alkalmazott, a plazma egy égő koronát képez a katód körül (innen az elnevezés is)
- Feszültség rákapcsolásakor (drót elektród): negatív koronakisülés alakul ki, pozitív ionok a drót felé gyorsulnak miközben másodlagos elektronok keletkeznek ionizációval
- a nagy E_n-jú (~10 eV) elektronok sugarát a kis E_n-jú elektronok tömege követi (~1eV) folytonos árama a 'streamer'
- a rugalmatlan ütközések mennek végbe a nagy E_n elektronok és nehéz részecskék között ami kémiailag reaktív specieszek keletkezését okozza

- Az impulzusok ideje rövidebb mint ami az ív indításához, fenntartásához kell, ezért a gerjesztés megszűnésével a kisülés is megszűnik (mielőtt a plazma-gáz vezetővé válna)
- kisülési áram kicsi (10⁻¹⁰–10⁻⁵ A)
- Pozitív korona is létezik (ekkor a drót elektródot pozitívan kapcsoliák – polarizálják)

- Hátrány: a plazma kiterjedése elég kicsi, ezért kis kiterjedésű előkezelt felület
- A felületnövelés érdekében a drót elektródot lap elektródra (felületnövelés) kell cserélni párhuzamosan a kezelendő felülettel, ez mikrokisülések kialakulását eredményezi, a lassú ionáram mindig a felületen alakul ki, ami nem homogén felületkezelést eredményezhet, megoldás: a dielektromos gát kisülés!

- Dielektromos gát kisülés (DBD eszköz):
- két párhuzamos fém elektródlap, de az egyik elektród vékonyfilm dielektrikummal borított
- stabil plazma működés érdekében az elektródok közötti távolság pár mm, a plazma gáz ebben a tartományban van
- gerjesztés szinuszos vagy impulzus jellegű térrel lehetséges
- gáz összetét.-től függően: a feszültség és frekvencia gerjesztés és a kisülés lehet 'koncentrált nyaláb' vagy 'diffúzan égő'
- koncentrált nyalábot mikrokisülések vagy lassú folyamok alkotják (ami statisztikusan fejlődik ki a dielektrikum felszínén)
- He a diffúz égőként működik (a nagy E, He metastabilis – 'Penning effektus')

- A dielektromos bevonat fontos funkciója:
- kisülési áram szabályozás (felső korlát), az ív-átmenet megakadályozása, ami lehetővé teszi a folyamatos vagy impulzus üzemmódot
- kis E_n folytonos áram elosztása az elektród felületén, ezzel homogén felületkezelés biztosítása (a 'streamer' kialakulása az elektronok dielektrikumon történő felhalmozódása miatt következik be)
- A DBD típusú eszközök gyakoriak és elég fejlettek (széles körben alkalmazott különféle kialakításban), pl.: fésű-katód (25 db szállal, nem vezetők felület kez.-re)
- Katód kialakítástól függően: fémekre vagy dielektrikumok kezelésére alkalmas felhasználás
- Spirál elektróddal csövek belsejének kezelése
- Dielektrikum bevonat ami kapilláris dielektrikumokat tartalmaz, vagy tárcsa üvegberakással

 DBD eszköz elvi felépítése (nem egyensúlyi – LTE diffúziós plazma atmoszférikus nyomáson):

- A korona kisülésre épülő felhasználások:
- On-line polimer felület-előkezelés (Aldyne):

- Bármilyen 3D-ós polimer kifinomult, gyors és hatékony felületkezelése:
- AcXys technológia:
- két hengeresen koncentrikus elektród, a belső elektród nagy fesz. kisfrekv. árammal kapcsolt
- kisülés az elektródok közötti térben megy végbe, hosszabb tartózkodási idő (gerjesztéssel együtt) 'utóégéssel' a kilépéskor, így fizikai és kémiai kezelés is lehetséges a kilépő plazmával

- Mikroplazmák:
- Egyenáramú (DC) mikroplazmák üveg chipeken, mikro-csatornák falának kezelésére
- élesített Pt drót mikroelektróddal (alternáló áram élesítés, maratás 6 M NaOH oldattal)
- Hasonló mikroplazma forrás (70 µm hosszú és 500 µm széles csatornával két W elektród között) gáz det.-ra

- RF kisülések:
- Szerkezetükből fakadóan lehetnek: kis és nagy teljesítményű gerjesztővel – a plazma jellegét módosítva – a kívánt felhasználásnak megfelelően
- A plazma kapcsolása lehet induktív vagy kapacitív
- Nagy E₁-jú kisülések

- ICP fáklyák:
- induktív csatolású kisülések (régóta ismeretes), plazma gyújtást és folytonos üzemelést a RF tekercs biztosítja

- A tekercsben folyó nagy áram erős RF elektromos teret indukál a plazma zóna közelében
- a térerő és mező együttesen gyorsítja az e⁻-kat és ezzel fenntartja a kisülést, a gerjesztett plazma frekvencia >1 MHz
- a gyorsan oszcilláló tér miatt az ionok és az e⁻ nem érnek falat (plazma és fáklya szenny. csökkenése) ami lehetővé teszi a különböző típusú gázokkal történő felhasználást, pl.: inert, reduktív, oxidáló, nitridáló, stb.

- A plazma egy kerámia csőbe zárt (ált. kvarc vagy SiN), levegő vagy vízhűtéses (teljesítménytől függ)
- induktív fáklyák széles tartományban működhetnek (20-1000 kW) 10-200 slm (standard liter per minute) gázáramlási sebesség
- nagyobb teljesítmény kisebb fáklyaátmérővel és frekvenciával
- Jól fejlett technika, széleskörű haszn. spektroszkópiai elemzésekhez és mérgező anyagok kezelésére
- RF fáklyák karakterisztikája 6000 K argon plazmával

Működési teljesítmény (kW)	Fáklya átmérő (mm)	Működési frekvencia (kHz)
50	42	1020
80	54	630
300	104	166
700	159	72

- Az IST rendszer (intelligens elektród tervezés): komplex felületek gyors és hatékony kezelése
- RF impulzus kisülési eljárás:
- műanyag edények belsejének tisztítása, mely a DBD módszeren alapul (adaptáció) komplex felületek kezelésére
- Anélkül hogy elektród volna az edény belsejében, a plazmát az edény belsejében állítják elő egy hengeres körülövező és egy felső központi elektród elrendezéssel, az egészet a dielektrikum fala stabilizálja
- kisülés indításhoz Ar áramlást haszn.-nak a központi elektródhoz közel, nagy telj.-ű gerjesztést igényel (~20 kW)
- impulzus mód lehetővé teszi kis hőmérsékleten bomló anyagok kezelését

• Az IST rendszer felépítése és elve

- Kis E_n-jú kisülések:
- kisülések indítása feszültséget igényel az elektródokra kapcsolva, ez a feszültség a P x d szerint változik (P: a gáz nyomása, d: az elektródok távolsága)
- Paschen törvények: atm. nyomáson csak pár mm elektród távolság lehetséges realisztikus feszültég értelmezésre, ezekben a rendszerekben a kisülések kapacitív csatolásúak
- Atmoszférikus nyomású plazmák (APPJ):
- L<20 cm hosszú, kis teljesítményű RF plazma fáklya, a 100-150 V RF gerjesztést a belső elektródra kapcsolják, ennek hatására a gázban beindul a kisülési folyamat kaszkádja, az ionizált gáz kivezetési sebessége ~12 m s⁻¹, a gerjesztési E_n miatt a kisülés stabil és ívtől mentes
- Négyszög változat: volumetrikus és homogén kisülést biztosít 1,6 mm távolságú sík Al elektródok között (mindkét elektród lyuggatott hogy a plazma távozhasson)

 A felső elektród van az RF gerjesztőhöz kapcsolva, a kisebb elektród földelve (H-zett amorf-Si előáll.ra), SiH₄ áramoltatással a H₂–He plazmában

- Hidegplazma fáklyák:
- A DBD és APPJ között állnak, SS tű az RF elektród, a kvarccső a katód és anód között helyezkedik el a plazma stabilitása és homogenitása érdekében, a plazma gáz a katód és a dielektrikum közé áramlik

- Az üreges vagy vájt katódos rendszerek:
- RF ceruza-fáklya igen hasonló a hideg plazmás rendszerekhez, a koaxiális eszközkialakítás kisméretű (L<10 cm)
- üreges tű RF elektródban áramlik a plazma, a katód a kvarc csőben foglal helyet, a plazma az üreges elektródban keletkezik
- A plazma sebesség olyan hogy a gáz a fúvóka (tűvég) külső részébe is kiáramolion

- Gát fáklya:
- A kvarccső a RF üreges elektródban van, a gázt a kvarccsőben vezetik, a szigetelőanyag vékony rétege stabilizálja a kisülést és határt szab az elektród melegedés mértékének
- A kisülés stabil egy sok porlasztós rendszer jellegű felépítés esetén (nagy felület kezelhető)

- Stabil és egységes plazma (Helios) nagy felület felett
- Heios rendszer: a hengeres üreges katód, aminek üreges szerkezete 900 gázáramlási csatornát tartalmaz, 900 db párhuzamosan működő katód, 7 cm² felett ad stabil kisülést
- Helios kiépítés: azonos elven alapszik, a négyszögletű üreges katód stabil és egységes RF plazmát képez 20 cm² terület felett
- A plazmaforrások nagyítása nagy felületek kezelésére
- RF mikroplazmák
- A kapacitív kapcsolt kis teljesítményű és kiterjedésű plazmák vizsgálata (számos területen használatos)
- Elvi felépítés és plazmaforrások:

- Mikrohullámmal (MW) indukált plazmák (MIPs):
- Elektródmentes plazmák (azonos elv szerint működnek)
- MW erőtér a gázzal közölt E₁-val a kel. plazma e⁻-it, rugalmas ütközéssel a nehéz részecskék és e⁻-ok között
- ütköző e seb.-e hatékonyan fenntartott a nehéz részecskékkel való találkozás által (a nehéz részecskék csaknem állnak), inkább az e ok a 'forróak' az atomok és ionok 'hidegek'
- sorozatos ütközések (val. eloszlás) hatására elég E, halmozódik fel az e on rugalmatlan ütközések; gerjesztés és ionizáció kifejtésére → a gáz részleges ionizációja és plazma áll. kialakul. és stabiliz.

- Minden MW plazma forrás keltés azonos elven alapszik (felépítés):
- MW táp, gerjesztő sugárforrás, MW generátor, gyújtó rendszer, gáz beadagolás
- kisütés indítása a kulcsa a MW forrásoknak
- öngerjesztő kisülés flexibilis paraméterezést és széles ipari alkalmazást tesz lehetővé
- Mindig elegendően nagy E_n biztosítása a plazma előáll.-hoz, számos módszer MW E_n koncentrálására
- Indirekt indítás (vezető elektróddal antenna, a MW az rúd antenna végén koncentrált)
- Rezonátor üreg, ami az elektromos mezőt maximalizálja a gázáramlás helyén
- Tekerccsel cirkulárisan polarizált hullám indukciója
- Jó elektromos de rossz hővezetővel könnyű plazmagerjesztés MW hatására Ar áramban

- Az atmoszférikus MIPs-ek 3 kategóriája:
- Rezonáns üreg, szabadon táguló és mikroplazmák
- Rezonáns szerkezetek:
- Beenakker üreg a legismertebb MW plazma gerjesztéshez, az üreg rezonátor viselkedése az alapja a tér erősítésének, a belső felület egy típusú hullámot reflektál, amikor egy rezonáns hullám belép és csapdázódik az üregben kis E_n veszt.-gel, állóhullám keletkezik
- fokozatos és sokszoros hullám csapdázás, kombinációjukból erősítő jellegű interferencia eredményeként E_n pumpáló hatású, ami képes kisülés gerjesztésére
- üreg rezonancia frekvenciája erősen geometriai paraméter függő (elsősorban a sugártól)
- geometriai paraméter egyeztetve a gerjesztő sugárforrás frekvenciájával (2,45 GHz) a plazma indítás érdekében

Hengeres üreg, tér rezonancia módjai és frekvenciája

- Szabadon táguló plazmák:
- Szabad levegőn át terjedő plazmák, kétféle típus: fémes és félfémes fáklyák
- Fémes fáklyák (TIA):
- Hagyományos sugárforrás vezető koaxiális átmenettel, a plazmagáz a koaxiális részen belül van elvezetve és egy porlasztón keresztül távozik, a MW-t magnetron gerjesztés ami eléri a gázt négyszögletes v koaxiális vezetőn keresztül
- A kisülés a porlasztó végén indul
- A plazma egy vékony konvergens nyaláb elnyúló láng résszel a tetején
- Többféle működési mód:

- TE₁₀ négyszögletes vezetőben, (E_z=0, z-irányú hullámtér eloszlás) és TEM a koaxiális vonalban (E_z=Hz=0)
- min.-t E_n veszt. (ami a parazita gerjesztési módokból adódna)
- Impedancia egyeztetés (két finom elemmel állítva az átmenetet a TE₁₀ és TEM között)
- optimális, ha a reflektált teljesítmény minimális (szabad.)
- hasonló átmenetek tanulmányozása (műszer kialakítás felhasználás függő)
- a porlasztó kvarc csőben: min.-t környezettel történő kcsh
- Hosszabb kvarccső mint a koaxiális elvezetés a belső vezetőben:
- aeroszol minták adagolása és a plazma csapdázása (spektroszkópiai célok), a kisülés indítás – gyújtás tekerccsel (gyűrű alakú plazma)

A TIA tervezés/felépítés

- Suzuki és mtsai készített egy bemeríthető indító nélküli vezetett koaxiális vonal-átmenet fáklyát
- A belső vezetőben vizet keringetnek, a réz porlasztó/fáklya vége, a tető Mo-ből a termikus degradációt megelőzésére
- a plazma koaxiális vonal-menti résbe juttatják, kisülés a Mo csúcs és a porlasztó közti térben – ahol az elektromos mező maximális
- A TIA felépítés: igényes, nagy jártasságot és gondosságot igényel
- Koaxiális fáklya egyszerűsítése:
- Tiago felépítés:
- mely egy egyszerű és kompakt egy-porlasztós felépítmény, de elektromágneses sugárzás emissziója fellép a térvezetőn és a porlasztó között
- sugárzásvédelem:
- hengeres fémháló elhelyezése a reaktorban, koaxiálisan a porlasztó körül, stabilitás fokozó, ez a MW fáklya (MTD) felépítés

- Egyszerű MW plazmafúvóka (UK):
- a plazma tér üreg egy merőleges erőtér vezetőt tartalmaz ami egy réz tányéron végződik (rövidzárként működik)
- gázfúvóka/porlasztó az üregben van közvetlen a térerő terelőben ejtett nyílás felett, ¼ hullámhosszal a rövidzártól ahol a maximális erőtér kialakul
- a berendezés 2,45 GHz és 896 MHz-en is üzemel (az utóbbi limitálja az EM sugárzást az erőtér-vezető nyitása ellenére)
- Fél-fémes fáklyák:
- felépítésük hasonló a fémes fáklyákhoz
- a legfőbb eltérés az EM hullámok keltésében van, mert hogy itt nincs koaxiális vonal-átmenet vezetés
- A fél-fémes fáklyákban a plazmagáz a kvarccsőben megy végig, ami áteresztő a MW számára

- A porlasztó/fúvóka végi utánégés helyett, itt a kisülés a zónán belül alakul ki ahol a kvarccső közbeékeli a merőleges erőtér vezetőt
- A rendszer ('guide-surfatron') felületi hullámokat hasznosít: mivel a TE_{II} mód (merőleges hullámvezető) konvertált TM_{II} módra (kvarc kapillárisban)
- a MW a határfelület mentén hat a kvarccső és a plazma között, majd a plazma kiterjeszthető hosszabb távolságokra
- Az irodalom legegyszerűbb fél-fémes fáklyája a MW plazmafáklya (MPT, Jin és mtsai AES alkalmazások, további lehetőség az ICP mellett – analitikában)
- MPT: lángszerű kisülések, a láng fehéren világít halvány középső csatornával

- kisülés indítása: öngyújtó kell legyen (flexibilis működtethetőség, ipari alkalmaz. érdekében)
- Y.C. Hong tervei alapján: egy eredeti 3 MW plazmafáklyából felépülően
- Mind W gyújtóval ellátva (szikragerjesztőhöz hasonló) ami a hullámvezető középpontjától kissé távol van elhelyezve
- a gyújtás kis teljesítményű MW gerjesztőt felhaszn. teszi lehetővé (magnetron használatos a tipikus otthoni MW melegítőkben)
- Kellő működési flexibilitás érdekében: 'rezonáns üreg fáklyát' fejlesztett ki Pott és mtsai
- A gáz járulékosan örvénylő (betáplálás a biztosíték a plazma stabilizálására és a fal égés elkerülésére)
- A fáklya impulzus gerjesztővel üzemel ami behatárolja a rendszer felmelegedését nagy teljesítményű működés/plazma esetén is

- Egy másik kisülés gerjesztési mód Sugiyama és mtsai által fejlesztett:
- MW-ú gerjesztéssel keltett atmoszf. Ar hideg plazma kisülések keltése perovszkit porokkal (elektromosan vezető, termikusan szigetelő)
- összes plazmafáklya még laboratóriumi fejlesztés stádiumban
- A Cyrannus® I (hengeres rezonátor gyűrűs nyílással) egy példa az ipari MW atmoszférikus plazmaforrások példája
- Homogén plazmát generál a kvarccsőben (lplas); jó polimer aktiváció és felület előkészítésre, de a zárt szerkezete miatt nincs sorozatgyártási alkalmazása

 A plazmák tipikusan 3 különböző zónája, TIA elrendezés esetén

• MPT felépítés vázlata

• Cyrannus RI plazmaforrás (Iplas)

- Mikro-strip plazmák:
- Biglic és mtsai fejlesztett kis teljesítményű, kompakt MW indukálta plazmaforrásokat
- Egy planáris mikro-strip vonal az egyesített (fused) SiO₂-on (szigetelő hordozó) és egy nagyméretű réz alappal
- A gázt csatornákban felületi hullámokkal gerjesztik a határfelület mentén a dielektrikum és a plazma között
- A kisméretű kialakítás miatt csökken a dielektrikumban fellépő veszteség (AES)

Összefoglalás

- plazma tulajdonsága fontos mert ez bef.-a a hőm.t (ami nem vált. ha a gáz Ar, Ar/H₂, N₂, levegő, O₂, Ar/He, mert az ionizációs En elég közeli minden esetben)
- He-ban igen nagy az ionizációs E_n (24 eV) ami igen nagy 4000-5000 K rés hőm.-t eredményez
- plazma hőm. finom beállítást igényel, nagy hőm. esések (változás) nehéz részecskékhez köthető (ami a gáz hőm.-t módosítja)
- mag hőm. spektroszkópia méréssel állapítható meg
- Térbeli felbontás körültekintéssel: az LTE és nem LTE plazmáknál

Plazmaforrások tulajdonságai (lab.-i fejlesztés alatt)

	Források	Plazma tulajdonságok	Működési paraméterek (közeg, áramlási sebesség, teljesítmény)
Ipari plazmák DC/LF	Ívfáklyák Plasmatreat®	$T_{e} = T_{h} \approx 8000 - 14,000 \text{ K}^{s}$ $N_{e} = 10^{21} - 10^{26} \text{ m}^{-3}$ $T_{h} < 700 \text{ K}$	Ar /He, 10– 150 slm,10– 100 kW Levegő, 117 slm
Impulzus DC/LF	Korona DBD	$T_{e} = 40,000 - 60,000 \text{ K}$ $T_{h} < 400 \text{ K}$ $N_{e} = 10^{15} - 10^{19} \text{ m}^{-3}$ $T_{e} = 10,000 - 100,000 \text{ K}^{\text{m}}$ $T_{h} < 700 \text{ K}$ $N_{e} \approx 10^{18} - 10^{21} \text{ m}^{-3}$	Levegő, 5 –40 slm, néhány 100 W
RF	ICP	$T_e = T_h = 6000 - 11,000 \text{ K}^{\text{s}}$ $N_e = 10^{21} - 10^{26} \text{ m}^{-3}$	Ar/He, 10–200 slm, 50–700 kW
Impulzus RF	IST	$T_{h} < 400 K$	Környező levegő, nincs gázáramlás, 20 kW
MW	Cyrannus®	$T_{h} < 700 K$	Ar/O_2 , 6 kW

Plazmaforrások tulajdonságai (lab.-i fejlesztés alatt)

	Források	Plazma tulajdonságok	Működési paraméterek
RF	АРРЈ	$T_{e} = 10,000 - 20,000 \text{ K}^{\text{s, m, l}}$ $T_{h} < 600 \text{ K}$ $N_{e} = 10^{17} - 10^{18} \text{ m}^{-3}$	O ₂ /He, 50– 90 slm, néhány 100 W
	Hidegplazma fáklyák	$T_{e} = 10,000 - 20,000 \text{ K}^{\text{s},1}$ $T_{h} < 700 \text{ K}$ $N_{e} = 10^{17} - 10^{18} \text{ m}^{-3}$	Ar, <1 slm, 100 W
	Üreges/vájt katód	$T_{e} = 3000 - 11,000 \text{ K}^{s}$ $T_{h} < 800 \text{ K}$ $N_{e} \approx 10^{17} - 10^{18} \text{ m}^{-3}$	Ar, He, <2 slm, 100 W
	Mikro-plazma CCµP	$T_e = 1850 - 2300 \text{ K}$	Ar, <0,2 slm, 5 –25 W

s: spektroszkópia mérésekből számított hőmérséklet m: modellek alapján meghat. hőm.

I: Langmuir szonda mérés alapján számított hőm.

t: termoelem

Plazmaforrások tulajdonságai (lab.-i fejlesztés alatt)

DC	Források	Plazma tulajdonságok	Működési paraméterek
MW	TIA	$T_{e} = 13,000 - 14,000 \text{ K}^{s}$ $T_{h} = 2400 - 2900 \text{ K}^{s}$ $N_{e} \approx 10^{21} \text{ m}^{-3}$	He, 2– 6 slm, 100 W– 2 kW
	MTD	$T_{e} = 17,000 - 20,000 \text{ K}^{s}$ $T_{h} = 1500 - 4000 \text{ K}^{s}$ $N_{e} = 10^{20} - 10^{21} \text{ m}^{-3}$	N ₂ , 1– 3 slm, 100 W– 400 W
	MPJ	$T_e = 12,000-17,000 \text{ Ks}$ $T_h = 5000-10,000 \text{ Ks}$ $N_e \approx 10^{22} \text{ m}^{-3}$	Ar, 2– 7 slm, 2 – 5 kW
	MPT	$T_{e} = 16,000 - 18,000 \text{ K}^{s}$ $T_{h} = 3000 - 3500 \text{ K}^{s}$ $N_{e} \approx 10^{20} - 10^{21} \text{ m}^{-3}$	Ar, <1 slm, néhány 100 W
	Baeva és mtsi	$T_e \approx 7000 \text{ K}^{\text{s}}$ $T_h \approx 7000 \text{ K}^{\text{s}}$ $N_e \approx 10^{19} \text{ m}^{-3}$	Rezonáns üreg Impulzus MW táp N ₂ , 30 slm, 800 W
	Sugiyama és mtsi	$T_e \approx 90,000 \text{ K}^{\text{s}}$ $T_h \approx 1000 \text{ K}^{\text{t}}$ $N_e \approx 10^{17} \text{ m}^{-3}$	Peroszkvit porral indítás Ar/H ₂ , 0,3– 1,2 slm, néhány 100 W

- GD folyamat: nagy kémiai reaktivitású kis hőm.-en ezért a GD plazmák felület aktiválásra és bevonatokra megfelelő
- Ív és ICP kisülések nagy hőmérsékletet biztosítanak (olvasztás, hegesztés, stb...)
- Atmoszférikus nyomású plazmaforrások

- Plazmaforrások felhasználása
- A bemutatott eltérő források kialakítás, telj., hőm., működési param. szerint, így változó a felhasználásuk is (csak az ipari alkalmazott felsorolva)
 - Spektroszkópiai alkalmazások
- induktív kapcsolt RF plazmák, atmoszférikus nyomáson haszn. gerjesztő források spektroszkópiai alkalmazásra
- mikroplazmás rendszerek különösen érdekesek – beépítés egyetlen chip-be, miniatürizált teljes analitikai rendszerbe

- Gáz kezelés
- Gáz tisztítás (gazdasági és környezeti jelentőség):

• Szennyezők:

- Illékony szerves komponensek (VOCs): CO, CIFCs, HFCs, HCFCs,...
- Szervetlen vegy.: NO₁, SO₂,...
- Mérgező kipufogó gázok, energia szektor erőművek, kémiai ipar, stb...
- Hatás: ózon réteg vékonyodása (magas légköri), üvegházhatás, szmog (szilárd szennyezővel együttes hatás), alacsony légköri ózon keletkezése – a NO, és VOCs reakciója UV sugárzás hatására (különböző atmoszférában)
- szennyezők eltávolítása atmoszférikus plazmákkal, jó hatásfok a nagy reaktivitás miatt

- Plazmakezelés menete:
- a mérgező komponensek a nagy E_n-jú komponensekkel ütközve elbomlanak, szabad gyökök keletkezése, inaktív specieszek keletkezése rekombinációval
- tisztítás hatásfok ellenőrzése:
- FTIR, OES, TCD GC (ált. a hatásfokon lehet növelni és elvárás hogy ne lehet keletkező mérgező anyag)
- gáz beadagolás (fontos):
- cél a nagy tartózkodási idő hatékony érintkeztetés → mérgező komp. eltáv., optimális áramlási seb. (kisebb áramlási seb. növeli az érintkeztetési – reakció időt a kisülésekben – ugyanakkor lehet hogy instabilitáshoz vezet)
- Egyéb komponensek hozzákeverése: O₂ (→ csökkent plazmareaktor redukciós potenciál – erő; NO bontásra)

 O_2 ionizáció:

- sok plazma E_n-t fogyaszt → a NO_x bontásra fordított E_n csökken
- N₂ és O₂ komponensekből keletk.-nek NO_x-ok
- párhuzamos, versengő reakció, seb.-e nő a NO_x bontás hatásfokának növelésével)
- NO_x-k keletkezésének a nagy T kedvez → az ilyen rendszerek fokozott melegedése kerülendő
- aktivációs E_n biztosítása bomláshoz, majd a legtöbb komp. elem v stabil vegyületként marad vissza
- különösen előnyös a rövid időintervallumú nagy E_n-jú impulzus üzemű plazmakisüléses eljárások

Gáz szintézis

- Mivel a plazmák nagyon reaktívak → számtalan anyag előállítása, pl.: C_xH_y, O₃,...
- Termékek azonosítása plazma-reaktorból elvezetés után, pl.: GC-MSsel, FID, TCD, ECD,...
 - Szénhidrogének
- C₂H₂ termelés ívplazmával (C₁–C₄ krakk/pirolízisével H₂ atmoszf.-ban, ipari eljárás; termelés aktuális igény szerint)
- Metán konverzió: impulzus kisülés v korona, lab. vizsg. tüzelőanyag/üzemanyag előáll., pl.: alkohol, formaldehid,...
- Gazdaságos tüzelőanyagok:
- cseppfoly. halmazáll. normál körülm. között tárolási és szállítás miatt, előnyösebb mint a H₂,CH₄, C₂H₆O (Kína tömegközl.)
- DME (adalék) gyártása DBD-vel, korom és füst kibocsátás leszorítása (DME: kiváló égés, nincs peroxid képzés)

Gáz tisztítás

Gerjesztés	Forrás	Működési paraméterek	Plazma	Szennyezők	Hatás fok	Megfigyelések
Fél-fémes MW fáklya	Kiyokawa fáklya Baeva fáklya	0,6 slm, 90 W 20 slm, néhány kW impulzus 10 slm, 1 MW impulzus	Ar Ar/12% O ₂ /2% H ₂ O N ₂ /NO N ₂ /NO/10%O ₂ N ₂ /NO/2%O ₂	NO 2000 ppm NO 500 ppm	98% 18% 50% - 50%	Reakció termék: N ₂ és O ₂ - NO és NO ₂ keletkezés komplex felépítés
Fémes MW fáklya	TIA	1 slm 220 W	Levegő/CHCl ₃	CHCl ₃ (3%)	100%	Reakció termék: CO ₂ , CO, NO _x , HCl, COCl ₂ , H ₂ O
	MTD	2 slm 400 W	Levegő	CFC 50%	100%	Levegővel hatékbb rombolás mint N_2 -nel Nincs NO_x Jobb mint a kis nyomású plazmák
	MPJ	5 slm 400 W	N ₂ /NO	NO 100 ppm	90%	Nincs NO _x

Ózon

- Széleskörű alkalmazás: vegyipar, vízkezelés, papírgyártás, élelmiszeripar
- Előállítás: korábban UV fénnyel, mostanra inkább kisüléssel
- A cél szabad 'O' atom előállítása ami képes O₃ képződést kezdeményezni
- Közege: O₂, levegő, N₂/O₂ plazma
 - Ózonplazma generátorok
- Kutató laboratóriumok: korona kisülés elven, dróthenger reaktorokkal
- Ipar: DBD eljárás, henger-henger reaktor elrendezéssel
- DBD és korona a legjobb O₃ előállítására
- Gazdaságosság: nagy volumenű gyártás, elérhető [O₃]
- UV: 0,1–0,001 tömeg%
- Korona kisüléssel: 1–6 tömeg%

Ózon sűrűsége az atmoszférikus plazmakisülésekor

Gerjesztés	Forrás	Ózon sűrűsége (cm ³)
DC	Ívplazma	<1010
Impulzus DC	Korona	1018
LF	DBD	1018
RF	APPJ	1016

- Anyagfeldolgozás
- Felületkezelés: tisztítás, aktiváció, maratás, bevonatok,...
- Tömbfázis kezelés: porok, megmunkálás, vágás, hegesztés, mérgező (fertőző) anyagok kezelése
 - Felületkezelés (számos mód)
- szennyezések eltáv.: szerves anyagok, pl.: olaj
- aktiváció: tapadó v nem tapadó felületek, maratás, funkcionalizálás (elektromos vezetés, korrózió védelem, kémiai gátak)
- A tisztítás és aktíválási foly.-ok gyakran megelőzik a lerakódási fázist (előkészítés a jó min. réteg felviteléhez – meghatározó)

Felület tisztítás

- Bárminemű szennyezés eltáv.: olaj, zsírok, porok, oxidok, biológiai és egyéb kémiai (peptidek) maradványok (halogénezett oldószerek helyettesítése átfogóan)
- Plazma tisztítás megfelelő kiváltó: teljesítmény és minőség tekintetében (XPS minőségi ellenőrzés utólag a felületekről)
- Kis hőm. eljárás: ami megengedi termikusan bomlékony anyagok kezelését, pl.: polimerek (PET)
- A tisztítási mechanizmus nem teljesen tisztított, biztos hogy plazma forrás függő
- Metastabil N₁ és He jelentős szerepet vállal az eltávolításban, a hőm. hatása kevésbé jelentős

Felület tisztítás

Gerjes ztés	Forrás	Szennyez ők (szubsztr át)	Plazm a	Keze lési időt arta m	Megfigyelések
LF	DBD	Ag ₂ S (Ag) Olaj (Al, Si) Fe ₂ O ₃ (Fe)	Ar Air, O ₂ Ar/N ₂	180 s Néhán y s 60 s	Ag_2S réteg eltáv., kenőanyagokat teljesen eltávolítja ha a plazma áramlási seb. ~1– 5slm, nagy áramlási sebnél az olaj polimerizációja, hatékonyabb levegővel mint O ₂ -nel, a metastabil N ₂ jelentősége! Teljes felület tisztítás (mechanizmus nem ism. – eltérő a maratási mechanizmusoktól aktív N ₂ -nel)
Impulzus LF	Köd-fény DBD	Olaj (Fe)	O ₂	10 min	Olaj eltávolítása, hatékonyság ~UH acetonos tisztítás
RF	Plazma ceruza	Korrózió (régi fém tárgyak)	Ar	30 s	Korróziós termékek redukciója régi fém tárgyakon kémiailag aktív folyadékkal a plazma hat. és szel. fokozása
	APPJ	Biológiai, Kémiai minták (üveg)	He/O ₂	30 s	Kémiai és biológiai minták semlegesítése (e.g. mustár, lépfene) APPJ kis hőmérsékleten megy és nem keletkezik káros vagy mérgező termékek, ezért gyors fertőtlenítésre alkalmas
Impulzus RF	IST rendszer	Mikro- organizmus (PET palack)	Néhány	15 ms	Sterilizálás és szagtalanítás a PET palackokon belül Nincs sérülés (mechanikai, termikus) a felületen Ipari eljárás: 36,000 db palack óránként

Felület maratás

- Új felületi bevonat vagy más anyag beépítése céljából
- maratási sebesség számos paramétertől függ, pl.: plazma összetétel (*F** hatása, O-t tart. komp.-k), a hordozó tulaj.-a, plazma teljesítmény, áram. seb., a hordozó minta helyzete
- He-t plazma stabilizálásra haszn.
- nagy E,-jú metastabil specieszek növelik a maratási hat.-ot – seb.-et, jelentős szerep a gerjesztés, ionizáció és disszociációs folyamatokban

Felület maratás

Gerjesztés	Forrás	Plazma	Hordozó	Maratási sebesség	Megfigyelések
LF	DBD	He/O ₂	Szerves anyagok	0,2 μm min ⁻¹	Nem egységes maratás
RF	APPJ	He/O ₂ He/O ₂ /CF ₄	Kapton SiO ₂ W Ta	8 μm min ⁻¹ 1,2 μm min ⁻¹ 1 μm min ⁻¹ 2 μm min ⁻¹	Kémiai foly., a metastabil O ₂ és atomok hatása
	Hidegplazma fáklyák	He/CF ₄	Si	0,3 µm min ⁻¹	Emisszió intenzitás (OES) of <i>F</i> * a Si maratási sebességével függ össze
Felület aktiválás

- bontás mellett a plazma aktív specieszeivel történő beültetést is jelent
- → sajátos tulajd.-ok fellépése a felületi E módosítása révén – a plazma összetétel jelentős hatása
- Ar–O, plazma: poláris, hidrofil funkció (beépítés) kiépítése (O-tart. csoportok nagy felületi sűrűségben) ami növeli az anyag felületi E,-ját, fém és festékekhez, nyomtatáshoz, bevonatokhoz, ragasztás és egyéb kötések kiépítésekor hasznos
- Ar–CF, plazma: a felület fluorozása (fel. E, tapadás csökkentése)

Felület aktiválás

Gerjesztés	Forrás	Plazma	Hordozó	Megfigyelések
Impulzus DC	Korona	Levegő	PP (E: 26 mJ m ⁻²)	PP felületi E_n növekedés: 43 mJ m ⁻² Felületi E_n stabil marad 100 nap alatt
LF	DBD	He	PP (E: 26 mJ m ⁻²)	Activáció hatékonysága függ a kisülés módjától Nyaláb kisülés megnöveli a PP felület E_n -t 45 mJ m ⁻² 62 mJ m ⁻² GD-al Nedvesítés javítása - O implantáció hatása és N atom sűrűsége a PP felületén O a plazma szennyezéseiből (N ₂ , H ₂ O) amit a nagy E_n -jú He metastabil specieszek gerjesztenek és ionizálnak
	Aldyne	Gáz kev. N ₂ -nel	PP (E: 26 mJ m ⁻²)	PP felületi $E_n n$ ő ~60 mJ m ⁻² Felületi E_n stabil ~100 days
	AcXys	Levegő	PP (θ: 95°)	Víz peremszög csökkenés: 25° Nedvesítés, peremszög stabil ~3 hétig
	Plasmat reat®	Levegő	PP (E: 26 mJ m ⁻²)	Nagyobb PP felületi E _n ~56 mJ m ⁻² Nedvesítés fokozása (O mennyisége és a felület topológiai változások hatására (termikus köv.)

Felület aktiválás

Gerjesztés	Forrás	Plazma	Hordozó	Megfigyelések
RF	Helios	Levegő/Ne	PE (E: 33 mJ m ⁻²)	PE felületi E_n növekedése: 57 mJ m ⁻² Dehidrogénezés (oxidáció; +C=C kötések keletkezése (FTIR) Egységes aktiválás ~20 cm ² felületen
Fél-fémes MW fáklyák	Sugiyama	Ar/O ₂	PP (θ: 100°)	Víz peremszög csökkenés: 80- CO, O–CO–O kötés létesülés (XPS)
		Ar/CF ₄		Víz peremszög csökkenés: 125° CF, CF ₂ , C-CF _n , CF-CF _n kötés kialakulása (XPS)

- A kezelés hatásossága:
- peremszög mérés (statikus és dinamikus, hitelesített tintával): θ<90[°] hidrofil, θ>90[°] hidrofób jelleg
- Felületanalitika: FTIR, Raman, XPS,... felületi E, – kémiai összetétel és szerkezet összefüggés
- Atmoszférikus plazmák:
- számos anyag kez.-re alk. melyek kis T-n bomlanak és a felület aktiválás relatív tartós (visz. stabil, a kezelt minta tárolható)
- kezelt felület tárolása és egy ismételt kezelése jelentős károsodáshoz vezethet
- plazmarendszerek ipari futószalag alk.

- Felületi bevonatok
- A lerakódások funkcionalizálják az anyag felületét míg a tömbfázis karaktere az anyagnak változatlan marad
 - Atmoszférikus plazmák két típusa
- Levegő plazmaszórás (APS)
- Plazma megnövelt kémiai gőzfázisú leválasztás (PECVD)

APS bevonatok:

- a bevonat anyaga finom por szuszpendálva a vivőgázban, a plazma porlasztó/fúvóka nyalábba, ahol a szemcsék gyorsulnak és felmelegednek, a nagy sebességű olvadt és félig olvadt szemcsék elérik a hordozó felületét, kilapulnak és lehűlnek (megfagynak)
- a gyors megszilárdulás alatt metastabil fázisok kel.-nek (üvegszerű amorf bevonatok)
- Többszörös atom lerakódással bevonat alakul ki (ami réteges szerkezetű)

• APS bevonatok

APS bevonatok	Funkció	Felhasználási példák
Zn, Al	Nedves korrózió ellenállás Electromágneses sug. védelem	Víz v gáz csövek, hidak, fémes szerkezetek Számítógépek
Al_2O_3	Elektromos szigetelés	Ózonizálók, induktor kemencék
CoCrAlY	Száraz korróziós ellenállás	Űr, gázturbinák, nukleáris
Zn, Sn, Cu	Elektromos vezetés	Hegesztések
Al ₂ O ₃ hidroxiapatit	Biokompatibilitás	Orvosi: művégtagok, protézisek
ZrO ₂ -Y ₂ O ₃	Kiv. termikus szigetelő	Turbina égetők, rakéta égetők
Cr ₂ O ₃ ZrO ₂ –NiCrAlY	Kopásállóság	Mechanika, hadsereg, űrrepülés, metallurgia, papír és olajipar

Plazmaszórás

Alumínium-oxid APS bevonat (SEM)

- A finom lemezes szerkezet, de a rétegek csaknem összemosódnak a nagy porozitás (akár 30%), sűrű csatorna hálózat miatt, a teljes vastagság 50 µm és néhány mm között
- a plazmafúvóka hőm.-e a 15000 K-t eléri, számos fém, kerámia és cermet porlasztható (olvadás esetén)
- feltétel: az olvadás és bomlás, ill. párolgási hőm. között >300 K
- DC és ICP fáklyák egyaránt jók porszórásra
- APS bevonatokat az ipar jó ideje használja
- érdekelt fő ipari szektor: űrutazás
- plazmaszórás széles körben alkalmazott, elméleti oldalról kevéssé tisztázott (a plazmafúvóka tul.-a, bev. keletkezésének mech.-a, a plazma és az adagolt anyag kölcsönhatása)

• PECVD bevonatok

- gáz vagy párolgó foly. prekurzor (oxid, polimer, C)
- plazma lehet termikus v hideg, mely reaktív közegként használatos bevonatok aktiválására
- reaktív specieszek a felületre jutva adszorbeálnak, reagálnak és a társtermékek deszorbeálnak
- keletkezés mechanizmusa: góc-képződés és növekedés
- PECVD 2 féle kiépítés:
- Közvetlen: a plazma és a prekurzor a kisülésbe van juttatva (a prekurzor teljes bomlása)
- Távoli: csak a gáz gerjesztett a kisüléssel, a prekurzor az után-égő zónába juttatva, ahol a csak a hosszú életű specieszek léteznek, jobb reakció kontrol (mivel kevesebb reaktív komp.), a prekurzor részleges aktivációja – bomlása, nagyobb molekula töredékek adszorpciója a hordozó felületén, mivel a hordozó távol van a kisüléstől (kis T-jű zóna) → bevonat polimeren is

- A működési mód: égés v utánégés jelent. bef. a bevonat szerkezetét és tulajd.-át
- Számos hordozó kezelhető bevonható, finom porok – feltéve hogy a reaktor felépítésben fluid ágy is szerepel v olyan rendszer ami a szemcséket a kisülésbe juttatja és tárolja (UH kürt és ciklon)
- Mivel a plazma elég összetett és fok. reaktív, a lerakódási mechanizmus értelmezése nem teljes (tanulmányok és modellek ellenére)
- A hordozó fűtése és H₂ a plazmában a kel. film min.-ét javítja, a szenny.-ők deszorpcióján és afilm morfológia változtatásával

Gerjesz tés	Forrá s	Plazma	Bevonat (hordozó) lerakódási sebesség	Megfigyelések	Alkalmazá sok
LF	DBD	N ₂ /SiH ₄ /N ₂ O	SiO _x (Si) [2,2 Am h ⁻¹]	Nano és mikro-szemcsék keletkezése A filmek morfológiája (sűrű vagy por) és vastagsága a hordozó helyzetétől függ a kisülésekhez képest (a hordozó nem fűtött)	-
		He/HMDSO	SiO ₂ (Al) [7,2 Am h ⁻¹)	Si –O kötések és C szennyezők (XPS, FTIR) A film keletkezésében a kiindulási ionok anyag transportja fontos tényező Al felületvédelme NaOH ellen (0,1 N)	Élelmiszer csomagolás (kémiai védelem)

Gerj eszté s	Forrás	Plazma	Bevonat (szubsztrát) lerakódási sebesség	Megfigyelések	Alkalmaz ások
RF	Ellenállás fáklya	He/Ce só vizes oldatából aeroszol	CeO _x (Al) [0,5 µm h ⁻¹]	Sztöhiometria: O felesleg (a CeO ₂ - hoz képest), C szenny. (XPS, EM) A környezetből szenny. és nem teljes prekurzor bomlás	Optika
		He/In, Sn szilárd és folyékony prekurzorból kapott gőzök	InO _x , SnO _x (polimer) [2,1 μ m h ⁻¹]	Jó tapadás és áttetszőség, elektromos vezetőképesség σ InO: 10 ⁴ S cm ⁻¹ , sztöhiometrikus: "In ₂ O ₃ és C szenny. <10% (EM), kezelési hőm: 300 K	TCO film (átlátszó, vezető oxidok)
	APPJ	He/O ₂ /TEOS	SiO ₂ (Si) [18 µm h ⁻¹]	Si–O kötések, nincs C szennyező (FTIR), jó elektromos és felületi morf. tulajd. (teljes érdesség: 20 0 nm, AFM), minta fűtése: 350 °C	Dielektrik umok, élelmiszer csomagolá s

Gerj eszté s	Forrás	Plazma	Bevonat (szubsztrát) lerakódási sebesség	Megfigyelések	Alkalmaz ások
RF	Hideg plazma fáklyák	Ar/TMOS/H ₂	SiO ₂ (Si) [36 µm h ⁻¹]	FTIR spektrum hasonló a termikus CVD SiO ₂ filmek; homogén bev., sztöhiometrikus SiO ₂ , C szenny. <1% (XPS), minta fűtés: 500 °C, H ₂ plazma hatása	Mikroelect ronika
		He/O ₂ /TEOT	TiO ₂ (Si) [54 µm h ⁻¹]	Amorf TiO_2 film (XPS, X-ray anal.), jó elektromos tulajd., a H ₂ plazma hatása a film szerkezetén: anatáz - rutil átmenet H ₂ hozzákev. hatására, minta fűtése: 500 °C	Mikroelect ronika
	ICP fáklya	Folyékony prekurzor O_2 -nel bejuttatva	$YBa_{2}Cu_{3}O_{7}$ (CaO–ZrO ₂) [6 μ m h ⁻¹]	Fekete filmek, sűrű tömött, erősen összefüggő – szálas (X-ray diff.), minta fűtése: 450 °C	Szupravez etők

Gerje sztés	Forrás	Plazma	Bevonat (hordozó) lerakódási sebesség	Megfigyelések	Alkalmazások
MW	Üreg	N ₂ /HMDS	SiO ₂ (C- szálak)	A bevonat tömör és homogén, amorf (TEM), jól tapadó, SiO ₂ sztöhiometrikus (EDX), SiC szemcsék kel. (prekurzor bomlás) Plazma eljárás (távoli mód) nem rontja a szálak mechanikai tulajdonságát de nem is javítja a C szálak/Al mátrix hatáfelületet sem	Metal-mátrix kompozitok
	Cyrannus R-I	Ar/O ₂ /HMDSO	SiO ₂ (Si) [9 µm h ⁻¹]	E–H állítás kis nyomáson (5 mbar) mielőtt elérné az atmoszférikus p-t hogy stabil kisülést érjünk el Si–O kötések (FTIR) Nehézség: NO _x termelés levegős plazmával	Kémiai gát, ill. védelem korrózió ellen

Polimer bevonatok

Gerjes ztés	Forrás	Plazma	Bevonat (hordozó) lerakódási sebesség	Megfigyelések	Alkalmazások
LF	DBD (köd- fény)	He/C ₂ H ₄	PE (Si) [1 µm h ⁻¹]	Nincs különbség a kémiai szerk ben a kis és nagy atmoszférikus nyomáson előállított plazma- polimer Filmek esetében (FTIR analízis)	Védőbevonat Tapadó réteg
		He/C ₂ F ₄	$(CF_2)n$ (PVC cső) [3 µm h ⁻¹]	Hidrofób réteg (θ : 98°) Kémiai szerk.: CF ₂ monomerek (FTIR, ATR, XPS anal.) Fluoro-polimer bevonatok PVC csövek belső felületén	Nem tapadó rétegek Orvosi (vér cirk. cső)
RF	Plazma ceruza	Ar/He/HMDS	Si alapú polimer [6 µm h ⁻¹]	Plazma polimerek stabil, kereszt- kötött de a film nem egységes Lerakódás folyadékba merített hordozóra	Védőbevonatok

• Szén bevonatok

Gerj eszté s	Forrás	Plazma	Bevonat (szubsztrát) lerakódási sebesség	Megfigyelések	Alkalmazások
LF	DBD	He/H ₂ /CH ₄	CNTs (Ni)	MWCNT növ., átmérő: 40–50 nm és 10 ⁹ –10 ¹⁰ cm ² felületi sűrűségben (SEM, TEM) Hibahely a Ni szemcse-aggreg. miatt, hordozó fűtés: 600 °C	Nanotechnolog ia H_2 tárolás Mechanikai anyagerősítés
			C (kvarc) [1,4 µm h ⁻¹]	Egységes, fekete bevonatok, hordozó fűtés: 400 °C	
MW	MPT	Ar/C ₂ H ₄ /Fe gőz	CNTs (fém)	SWCNT halmok és elszigetelt egységek, átmérő: 0,9–1,5 nm Összevethető a lézer elpárologt. és ívkisülés technológiával Probléma: C lerakódás a plazma csőben, kisülés destabilizációt	Nanotechnológ ia H ₂ tárolás Anyagerősítés
DC	Ívplazma fáklya	CH ₄ /H ₂ *prekurzor lehet cseppfolyós	Gyémánt (Mo) [150 µm h ⁻¹]	A szint. gyémánt felületi morf. és a kristály szerkezet erősen paraméter függő (CH ₄ menny., hordozó hőm.), legjobb film minőség: 4% CH ₄ , 950 °C	Mechanikai és elektromos

- Tömbfázis kezelések
- Nagy hőm.-ű plazmaforrások alkalmazása
- Ív v MW források lehetnek
- Ívplazma ipari alk. régóta mint 'tiszta' hőforrás
- MW források fejlesztése jelenleg is
 - 4 felhasználási terület
- Porok kezelése: min. >1500 K, kémiailag reaktív plazma, nehézség: a finom por gyűjtése és reakciója a közeggel (környezettel, kesztyűs szekrények használata)
- Mérgező hulladékok kezelése: azbeszt, veszélyes ipari és radioaktív hull.-ok (hull. kez. és hasznosítás)
- A plazma nagy T-e gyors és teljes pirolízist okoz, a szervetlen anyagok megolvadnak és üvegesednek → hulladék passziválás és térfogat csökkenés

Por kezelés

Gerjesztés	Forrás	Alkalmazások
DC	Ívplazma fáklyák	Ultra finom por, vékony film előállítás (fémes: Ag, Cu; kerámia: nitridek, karbidok, kompozitok; C)
RF	ICP fáklyák	Fertőtlenítés: hőkezelés, szférikus alakzatok
MW	Fél-fémes fáklyák	Oxid kerámia olvasztás, szférikus alakzatok

Hulladék kezelés

Gerjesztés	Forrás	Alkalmazások
DC	Ívplazma fáklya	REFIOMS üvegesedés: EDF eljárás EUROPLASMA eljárás Orvosi hulladék pirolizise Veszélyes hulladék bontása PLASMION eljárás
MW	Fémes fáklyák	Klorid hulladék üvegesítés, radióaktiv, nukleáris hulladék- kezelés

- Anyag feldolgozás
- Mivel ez a típus nagy T-t igényel, ív és MW plazma felhaszn. terület
- Ívplazmák: vágásra, hegesztésre, Ar v He védőgázzal elkerülendő a lehetséges reakciókat és szennyezést a környezeti anyagokkal (oxidációs foly., nitrid képződés)

Metallurgia

- Igen nagy hőm.-ű eljárások → nagy telj.-ű ívplazma jöhetnek szám.-ba, műk. teljesítmény: ~néhány MW ami szükséges:
- extraktív metallurgia: ércek redukciója fémek előáll.-ra
- olvasztásos-tisztítás: inert atmoszférában olvasztás majd lassú megszilárdulás hűtött réz üstben, a lehülés mértéke változtatható vagy programozható indukciós fűtéssel kombinálva (Ti újraolvasztása)
- fűtés: cement ipar

Anyag megmunkálás

Gerjesztés	Forrás	Alkalmazások
DC	Ívplazma fáklya	Hegesztés: MIG, TIG PTA újratöltés, kerámiák vágása, fémek
MW	Fémes fáklyák	Kerámia eljárás: alumínium-oxid gyöngy gyártás, kvarc üveg rostok, szálak Hibrid plazma-lézer vágók

Megmunkálás

hegesztés (balra) – vágás (jobbra)

Lámpák

- Nagy nyomású lámpák anyaga erősen sugárzó
- Ha a látható tartományban sugároz → sugárforrásként (lámpa) használható
- Kétféle változat:
- elektróddal-szerelt lámpák: ív elven működnek, a legfejlettebbek, pl.: nagy nyomású Hg gőz lámpa (HPM) főleg zöld tartományban sugároz, más λ-ú fény más anyag kisülésbe való juttatásával
- elektród-nélküli lámpák (növekvő érdeklődés, mivel ezek mentesek a plazma és elektród között fellépő reakcióktól): MW gerjesztésűek (táplálás), pl.: Solar 1000 MW-HP lámpa S-nel (kén lámpa); előnye a jó szín, nagy sugárzási hat.-ság (elektród nélkül), kevéssé körny. károsító (nincs Hg)
- Hátrány: magnetron energia forrás, gerjesztő

Kén lámpa felépítése

Nagy intenzitású ívplazma lámpa (OSRAM Sylvania)

Összefoglalás

- Az alkalmazások plazma tulajdonság és gerjesztés függő (polimer felületkezelés 500 K alatt, de vágás és hegesztés 1500 K körül)
- Kis hőm. kis teljesítmény (~100 W) v a plazma plume-nál nagy teljesítmény (MW-nél különösen), csak bizonyos távolság a plazma magtól – megfel. számú aktív speciesz
- Nagy hőm. nagy teljesítménnyel, induktív v MW plazmák
- MW plazmák széleskörűek (kis és nagy hőm.-ek), mégha szerepük a felületi bevonatok terén eddig nem feltárt
- Kis telj. és RF plazmák reaktív speciesz biztosítása kis hőmérsékleten
- Iparban: ív és induktív plazmák a gyakoriak, DBD és korona források 3D-s tárgyak kezelésére
- Egyéb újabb alk.-ok: plazmakezelő és fúvóka: felület-aktiválás (polimerre is) és komplex geometria sem gond, kezelt terület megnövelése sok-porlasztós tömbbel
- Mikroplazma források: könnyű kezelhetőség és szállíthatóság: spektrometria, gáz kezelés, fertőtlenítés, bevonatok, stb...

Laboratóriumi atmoszférikus plazmaforrás előállítása

Gerje sztés	Forrás	Alkalmazások	Előnyök	Határok
RF	Vájt katód APPJ Hideg plazma fáklyák	Hegesztés: MIG, TIG, PTA Fém és kerámia vágás	Komplex felületek kezelése, könnyű kezelhetőség Egyszerű felépítés	Kis hőm. alkalmazások Kis kezelt felület
MW	Fémes fáklyák	Kerámia feldolg.: alumínium-oxid gyöngyök és kvarc szálak gyártása Hibrid plazma- lézeres vágás	Spektroszkópia, gáz tiszt., mérgező hull. kez., mechanikai feldolg., komplex felületek kez., kis és nagy hőmen	Komplex felület kezelések MW eszközök (drága gerjesztő forrás, pontos megmunkálás, biztonsági szabályok)
	Fél-fémes fáklyák	Spektroszkópia	Komplex felület előkezelés	MW eszközök (drága gerjesztő, pontos megmunkálás, biztonsági szabályok) Kisülés indítás Kis kezelt felület
		Gáz tisztítás, felül előkez. tiszt. és akt., Bevonatok, Poranyagok Lámpák	Széleskörű alkalmazás (kisebb hőmen)	Nehéz ipari átvitel (stabilitási gondok, hasznos életidő) MW eszközök Kisülés indítás Kis kezelt felület

Laboratóriumi atmoszférikus plazmaforrás előállítása

Gerjes ztés	Forrás	Alkalmazások	Előnyök	Határok
DC	Ívplazma fáklyák	Bevonatok (APS) Megmunkálás Mérgező hulladékok kezelése Porok kezelése Lámpák	Robotika adaptálás Komplex felületek kez. Nagy leválasztási sebesség, vastag bevonatok, sokféle anyag leválasztása	Zaj, por emisszió, sugárzás Katód erózió Sokféle paraméter nehezíti a foly. kontrollját
RF	ICP fáklyák	Spektroszkópia Bevonatok (TPCVD) Mérgező hulladékok kezelése Por kezelése	Nagy teljesítménnyel is üzemképes, nincs elektród Komplex felületek kezelése	Zaj, por emisszió, sugárzás Nehézkes állíthatóság: a hordozót kell mozgatni
Impulz us DC	Korona	Ózon termelés Felület aktíválás	Komplex felületek kezelése, könnyű kezelhetőség	Inhomogén kezelés A felület sérülhet

Laboratóriumi atmoszférikus plazmaforrás előállítása

Gerjeszté s	Forrás	Alkalmazások	Előnyök	Határok
LF	DBD	Ózon termelés Felület aktiválás, felülettisztítás	Treatment of large plane surfaces Könnyű kezelhetőség	Stabilitási gondok (lerakódás az elektródon) Réstávolság befoly. meghat. a kezelt darab vastagságát
	Plasma treat®	Felület aktiválás, felülettisztítás	Több-porlasztós rendszer Komplex felületkezelés Robotika alkalmazás	Elégtelen teljesítmény olaj eltávolítására
	AcXys	Felület aktiválás és tisztítás	Nagy felületek kezelése, komplex darabokon Robotika	Nagy áramlási sebesség Elégtelen teljesítmény olaj eltávra
Impulzus RF	IST	Sterilizálás, szagmentesítés	Komplex felület gyors kezelése (36,000 db palack óránként) Kisebb kiadások összehas. más sterilizálási eljárással	_
MW	Cyrannus®	Polimerek felület aktíválás és tisztítás	Stabil és homogén kisülés Komplex felületkezelés	Kvarccső átmérő a kezelt anyag felületét behatárolja Zárt felépítés nem kedvez termelési adoptnak

Rövidítések listája

Acronym Signification Page

- APPJ Atmospheric pressure plasma jet
- APS Air plasma spray
- DBD Dielectric barrier discharge
- DC Direct current
- HEIOS Hollow electrode with integrated open structure
- HELIOS Hollow electrode with linear integrated open

structure

- ICP Inductively coupled plasma
- LTE Local thermodynamic equilibrium
- MPJ Microwave Plasma Jet
- MPT Microwave plasma torch
- MTD Microwave torch discharge
- PECVD Plasma enhanced chemical vapor deposition
- pLTE Partial local thermodynamic equilibrium
- PTA Plasma transferred arc
- RF Radio frequency
- TIA Torche a` injection axiale
- slm (s.l.m.) standard litres per minute